
THE COOPER UNION FOR THE ADVANCEMENT OF SCIENCE AND ART
ALBERT NERKEN SCHOOL OF ENGINEERING

ApolloSim: A Lidar Simulator With
Calibrated Sensor Noise

By

Gavri Kepets

A thesis submitted in partial fulfillment of the requirements for the degree of Master of
Engineering

Advisor

Dr. Carl Sable

THE COOPER UNION FOR THE ADVANCEMENT OF SCIENCE AND ART

ALBERT NERKEN SCHOOL OF ENGINEERING

This thesis was prepared under the direction of the Candidate’s Thesis Ad-

visor and has received approval. It was submitted to the Dean of the School

of Engineering and the full Faculty, and was approved as partial fulfillment

of the requirements for the degree of Master of Engineering.

Barry L. Shoop, Ph.D., P.E. - May 10th, 2024

Dean, Albert Nerken School of Engineering

Prof. Carl Sable - May 10th, 2024

Candidate’s Thesis Advisor

Acknowledgment

I would like to extend my deepest gratitude to those who have made the

completion of this thesis possible. Throughout my entire college career I have

been incredibly fortunate with the amount of support I have received from

family, friends, professors, and more.

A special thanks goes to Professor Carl Sable, my thesis advisor and pro-

fessor, whose guidance and classes have been invaluable. It was always a

pleasure to be in Professor Sable’s classes, and I have learned an immense

amount from him. I’d also like to thank Michael Giglia for always providing

me with technical assistance and excellent advice.

I am extremely thankful to my family and friends. Thank you to my

parents, who enabled me to be able to go to college, and have always been an

incredible support system for me. Thank you to Abby, my amazing fiance,

who has always been there for me no matter what and has been a constant

source of support and happiness. Finally, I would like to thank my friends,

especially Netanel and Ayden, for continually pushing me to excel. Our

shared accomplishments at Cooper have been remarkable.

The journey has been challenging and rewarding, and I owe everything to

those who have supported me throughout it.

Thank you - Gavri Kepets

i

Abstract

In this work, I present a light detection and ranging (lidar) sensor simulator

that incorporates realistic sensor noise. Lidar sensors are used for various

applications, ranging from autonomous vehicles to satellite imagery. Field

testing a lidar presents multiple inconveniences and challenges; it is often

costly, poses a risk of damage to the device, and is time-intensive. Therefore,

the benefits of employing a lidar simulator are evident. Moreover, lidar data

can be crucial for training large-scale deep learning models, which require

massive datasets; generating this data in simulation is significantly quicker

and more cost-effective than manual data collection.

I introduce a lidar simulation methodology that uses a real lidar sensor

to calibrate the simulation, in order to maximize the accuracy of the simula-

tion. The simulation utilizes sensor data from multiple benchmark materials

to accurately replicate the noise in the data produced by the sensor. The

results indicate that simulations calibrated with real sensor noise outperform

those based on standard parametric approaches. The data generated by the

simulation confirms that calibrating a lidar simulation with the target sensor

is a viable and economical approach for rapid and precise lidar simulations.

ii

Contents

Introduction 1

1.1 Motivation . 1

1.2 Novel Approach to Lidar Simulation 3

Background Information 5

2.1 Lidar Sensor Functionality . 5

2.1.1 Time of Flight . 5

2.1.2 Lidar Sensor Specifications 6

2.1.3 Beam Emission . 7

2.1.4 Point Clouds . 8

2.1.5 Key Characteristics of Lidar Data 9

2.2 Simulation . 10

2.2.1 Parametric vs Nonparametric Simulation 10

2.2.2 Synthetic Noise . 11

2.3 Computer Graphics . 12

2.3.1 OpenGL . 12

2.3.2 Compute Shaders . 13

2.3.3 Ray Tracing . 14

2.3.4 Bidirectional Reflectance Distribution Models 15

iii

Related Work 18

3.1 HELIOS++ . 18

3.2 A GPU-accelerated framework for simulating LiDAR scanning 19

3.3 BlenSor: Blender Sensor Simulation Toolbox and BlAInder

Range Scanner . 20

3.4 Lidar Simulation for Robotic Application Development 21

3.5 LiDARsim: Realistic LiDAR Simulation by Leveraging the

Real World . 22

3.6 Learning to Simulate Realistic LiDARs 22

Implementation 24

4.1 Simulator Overview . 24

4.1.1 Simulator Pipeline . 24

4.1.2 Technology Stack . 25

4.2 Sensor Calibration . 27

4.2.1 Sensor Calibration Overview 27

4.2.2 Interfacing with the Lidar 28

4.2.3 Sensor Calibration Implementation 29

4.3 Graphics Engine . 32

4.3.1 Graphics Engine Overview 32

4.3.2 Beam Rendering . 33

4.3.3 Calibration Data Rendering 34

iv

4.4 Simulation Engine . 35

4.4.1 Simulation Engine Overview 35

4.4.2 Simulation Engine Inputs 35

4.4.3 Lidar Beam Calculation 36

4.4.4 Synthetic Noise Calculation 38

4.4.5 BRDFs for Addressing Data Gaps 40

4.5 Application Walk-Through . 43

4.5.1 Calibrating the Simulation 43

4.5.2 Configuring the Simulation 45

4.5.3 Running the Simulation 45

Results and Evaluation 48

5.1 Evaluation Overview . 48

5.2 Validating Key Characteristics 48

5.3 Improved Accuracy of ApolloSim Over Parametric Models . . 53

5.4 Efficacy of BRDFs in Addressing Data Gaps 55

5.5 Qualitative Analysis of ApolloSim 57

Conclusions and Future Work 66

6.1 Conclusions . 66

6.2 Future Work . 68

6.2.1 Improving the Current Features of ApolloSim 68

6.2.2 Additional Features for ApolloSim 71

v

A Additional Information 73

A.1 Why “ApolloSim”? . 73

A.2 ROS 2 Node for Collecting Lidar Data 73

A.3 Propagation of Data from Calibration to Simulation 75

A.4 Compute Shader Pseudocode 77

A.5 The Cook-Torrance Model . 79

A.6 The Fresnel Effect . 81

Bibliography 82

vi

Introduction

1.1 Motivation

Light detection and ranging sensors, commonly known as lidar sensors,

are used to measure the distances of surrounding objects using light. Lidar

sensors have become incredibly useful and increasingly common in the fields of

robotics, automation, and remote sensing. For example, lidar sensors can be

used on autonomous vehicles or robots for environmental detection, on drones

or satellites for geographic mapping, and even for mapping archaeological

sites [1, 2, 3].

An important aspect of working with lidar sensors is testing the equip-

ment, especially if the sensor is a key component of high-stakes systems like

an autonomous vehicle’s environmental detection system. It is essential to

rigorously test both the lidar sensor and the vehicle itself before deploying

them in real-world operations. The real world is unpredictable, and ensur-

ing the functionality of a device as potentially dangerous as an autonomous

vehicle is imperative. Testing a device can be an incredibly elaborate task;

often, in lieu of testing a physical device, the device is tested in a computer

simulation.

Simulation is an important part of testing in engineering. Simulations

1

exist for various scenarios, devices, and phenomena. Computers can simulate

myriad scenarios, sometimes instantaneously, allowing the testing process

to be relatively quick, economical, and extensive. In addition to testing,

simulations can be useful for generating synthetic datasets to be used in

machine learning models. The focus of this thesis is on lidar sensor simulation.

The ability to simulate the data collected from a lidar sensor can be especially

useful for testing devices that utilize lidar sensors as well as for training

models that use lidar data.

Numerous lidar sensor simulators already exist [1, 4, 5, 6, 7], and each

simulator has their own advantages and disadvantages. A major aspect of

simulation is “noise”. Sensors collect data from the real world, and the real

world is not perfect; therefore, “noise”, or unwanted, irrelevant, and possibly

false information, is introduced to the sensor. Computer simulations can be

inherently perfect, and have no sensor noise; therefore, often, synthetic noise

is injected into the simulation in order for the simulation to more closely

resemble the real world [8].

As mentioned above, lidar simulators can be incredibly useful for a variety

of applications. The goal of this thesis is to develop a real-time lidar sensor

simulator, called ApolloSim (A.1), with accurate synthetic noise; the quicker

and more accurate a simulation is, the more useful it can be for testing

purposes.

2

1.2 Novel Approach to Lidar Simulation

The concept of synthetic sensor noise for simulation is not new. Some-

times, the synthetic noise is based on numerous derived equations and ap-

proximations that are collected from the real world [4, 5], and other times,

synthetic noise is data-driven, and learned through a machine learning or

deep learning model [9, 10, 11]. This thesis focuses on a different kind of

noise, which will be referred to as “calibrated noise”. Calibrated noise is

derived from real data collected specifically with the sensor the user wants to

simulate.

First, the user sets up their lidar in front of the material benchmark. The

material benchmark includes a number of distinct and prevalent materials

that the lidar may encounter. Each material interacts with light in different

ways, causing the beams emitted by the lidar to react differently to each

material, resulting in a unique signal for each material. After data is collected

for each benchmark material, the noise that the sensor experiences with each

one can be derived. After characterizing the noise in the data, ApolloSim

will attempt to mimic it in simulation.

For example, the majority of a beam of light is reflected from a smooth,

metallic surface, but scattered from a rough, craggy surface. Therefore, lidar

sensors will receive a different signal from a brick wall than a shiny car door.

Because the materials during calibration are known, the simulation will know

3

to make smooth, metallic surfaces return intense and complete signals, and

to make rough, craggy surfaces return dim and incomplete signals.

This approach has the potential to provide complete and accurate sensor

noise for a lidar simulation. Using calibrated noise bridges the gap between

theoretical models and data-driven noise, promising significant improvements

to lidar simulation accuracy. Using calibrated noise, this work aims to im-

prove the realism of lidar simulations, bringing them one step closer to the

real world.

4

Background Information

2.1 Lidar Sensor Functionality

2.1.1 Time of Flight

A lidar sensor uses light to determine the distances of objects around

itself. In order to do so, the lidar sensor emits a laser beam and records how

long it takes for the beam to return. Because the speed of light is known,

and the time it took for the light to return is known, the distance the light

traveled can be derived. Lidar sensors can emit hundreds of thousands of

beams per second, allowing them to collect extensive information about their

surrounding environment.

D = c
t

2
(2.1)

As seen in equation 2.1, the distance between the sensor and an obstacle

can be determined by multiplying the speed of light by half of the time it

took for the laser to return back to the sensor [12].

5

2.1.2 Lidar Sensor Specifications

Lidar sensors come in all shapes and sizes. To name a few examples,

terrestrial lidar sensors are used for gathering data on land, often from robots

and autonomous vehicles, airborne lidar sensors are used for gathering data

from drones or helicopters, and bathymetric sensors are tuned to gather data

underwater [13].

Each sensor has its own set of specifications, which determine the capa-

bilities of the sensor as well as the data that it can collect. Specifications

such as working range and field of view determine the area that the lidar can

see. Additionally, some sensors are two-dimensional, which means they can

only see in the horizontal plane, while others are three-dimensional, which

means they can see in the horizontal and vertical plane (it also means they

have both a horizontal and vertical field of view). In order to capture a large

field of view, the laser inside of a lidar sensor rotates, allowing the sensor to

capture data from all around itself.

More often than not, lidar sensors contain more than one beam emitter,

in order to collect as much data as quickly as possible. For example, the

Velodyne Puck, as seen in figure 2.1, has sixteen laser emitters [14]. Lidar

sensors also have a scan and sample frequency, which determine the amount

of beams that are cast by the sensor. The scan and sample frequency are

related; the scan frequency is the speed at which the lidar completes a full

6

Figure 2.1: The Puck Lidar, by Velodyne, is a three-dimensional lidar sensor with sixteen
lasers. The Puck has a 360-degree horizontal angular range, a 30-degree vertical range, a
100-meter working range, and a sample frequency of about 600 KHz [14].

cycle of measurement across its entire field of view, which indicates how

many times per second the sensor can scan its environment, while the sample

frequency is the amount of beams generated by the lidar per second. For

example, if a lidar has a 10 Hz scan frequency, it gathers and completes a

complete cycle of data ten times per second. If that same lidar has a 32 KHz

sample frequency, it means that it casts 32,000 beams per second, and 3,200

beams per frame [15].

2.1.3 Beam Emission

For each beam, a series of light pulses are actually emitted as opposed

to a single, constant beam. A constant beam is easier for the sensor to

detect and will travel further, but will be more difficult to determine exactly

how long it took for the beam to return, as it lacks discrete timing markers.

On the other hand, the emission of multiple, shorter light pulses enables

7

the lidar to accurately measure the travel time of the beam. Pulses can be

differentiated by varying the wavelength, amplitude, and more. Additionally,

multiple unique pulses can be used to capture environments at varying levels

of detail [16]. The size and shape of the beam heavily influence the accuracy

and capabilities of the sensor [17].

2.1.4 Point Clouds

The output of a lidar sensor is a collection of points, commonly known as

a “point cloud”. Each point marks the location of a reflected lidar beam from

an object or surface back to the sensor. Point clouds are the lidar sensor’s

representation of its surrounding environment, as seen in Figure 2.2.

Figure 2.2: This is a render of a point cloud generated using BLAINDER, a lidar simula-
tion tool for Blender [18]. The simulated sensor is a three-dimensional sensor with a scan
frequency of 5 Hz and a sample frequency of 288 KHz. (3D Models supplied supplied by
Sketchfab [19, 20, 21]).

In addition to the locations of points, point clouds often also include the

8

intensity of the backscattered light for each point. In Figure 2.2, points

shaded in green represent stronger intensity values, whereas points shaded in

red indicate weaker intensity values.

The location vector can be a two or three-dimensional vector, and the

density and accuracy of these points depend on the operational parameters

of the sensor, as detailed above in Section 2.1.2. For example, a lidar with a

very high sample frequency will generate a high-density point cloud [22].

2.1.5 Key Characteristics of Lidar Data

There are a few key metrics that are often used to analyze a point cloud.

Common metrics include raydrop and the distributions of intensity and dis-

tance values. Raydrop is when a lidar sensor emits a beam and never ob-

serves a response. Raydrop can happen if the nearest obstacle is out of the

detectable range of the sensor, if the material the beam collides with does

not reflect the beam back appropriately, or due to various environmental con-

ditions such as fog, rain, or atmospheric conditions [9, 10]. In addition to

raydrop, it is also important to consider the distribution of the point cloud

data. Many lidar simulations use a normal distribution to sample synthetic

noise [23, 4, 24]. In ApolloSim, the mean and standard deviations for distance

and intensity values, as well as the raydrop rate, are important for generating

synthetic noise.

9

2.2 Simulation

2.2.1 Parametric vs Nonparametric Simulation

Simulations are often either parametric or nonparametric. A parametric

model or simulation is determined by a derived equation, based on real-world

observations and approximations. Nonparametric models are typically data-

driven and do not assume a predefined form for the relationship they are

modeling.

For example, let’s say there is a simulation that simulates the growth

of a tree. A parametric solution employs a specific pattern or model to

estimate the growth of a tree. An example of a parametric solution could be

to employ a simple formula in which each year the tree grows two feet, as

seen in Equation 2.2.

Height = Age ∗ 2 (2.2)

The parametric model is simple, and typically derived by someone who

determined that trees, on average, grow two feet per year. The nonparamet-

ric solution, on the other hand, does not assume a specific growth pattern;

instead, it may use historical data from numerous trees to model the growth

curve. An example of a nonparametric model would be using a Decision Tree

approach to predict the height of a tree based on a variety of factors, not just

age. This method could consider data on sunlight, soil type, water availabil-

10

ity, and other factors that influence growth, creating a more complex model

that can adjust to a wide range of conditions without a fixed formula.

As described above, parametric simulations are great for fast, understand-

able results, while nonparametric simulations are more suitable for complex

and nuanced results [25, 26]. In comparing parametric and nonparamet-

ric lidar simulations, a parametric simulation may use specific equations to

model the interaction of light with objects, often simplifying complex envi-

ronments into manageable mathematical forms. Conversely, a nonparametric

lidar simulation does not rely on defined models or equations but instead uses

data-driven approaches to model interactions. This may involve training a

model to generate point clouds given a specific environment [9, 10].

2.2.2 Synthetic Noise

Sensors in the real world are not perfect; the data that they collect always

comes with “noise”, which is irrelevant, incoherent, or false data. In simula-

tion, however, sensors are not prone to the same issues. Because a simulation

aims to resemble the real world as closely as possible, synthetic noise must be

added to the system. Due to the formulaic nature of parametric simulations,

they often require synthetic noise. Synthetic noise can be either parametric,

based on various relevant equations [8], or nonparametric, derived from a

machine learning model, as mentioned in Section 2.2.2.

11

2.3 Computer Graphics

2.3.1 OpenGL

OpenGL is an application programming interface and programming stan-

dard for rendering graphics and images and is commonly used for video games,

visualization, CAD software, and more. OpenGL is particularly powerful due

to its ability to run commands on the graphics processing unit, or GPU, al-

lowing for fast and efficient graphics rendering [27]. The OpenGL graphics

pipeline consists of multiple stages, each of which is responsible for running

various calculations on the GPU to render an image. At each stage, small pro-

grams known as shaders, perform the appropriate calculations for each stage.

For OpenGL, these shaders are written in the OpenGL Shading Language,

or GLSL [28].

The OpenGL pipeline mostly utilizes two primary shader stages, the vertex

shader stage, and the fragment shader stage. The vertex shaders are respon-

sible for processing every vertex in the scene, while the fragment shader is

responsible for determining the color value for each pixel on the screen [29].

As seen in Figure 2.3, the vertex and fragment shaders work together to

render a multi-colored triangle.

12

Figure 2.3: The vertex shader specifies three vertices that make up the triangle, while the
fragment shader colors each vertex and all of the pixels in between [27].

2.3.2 Compute Shaders

A compute shader is one of the shader stages available in OpenGL. Most

other shader stages serve a specific purpose; as mentioned above in Section

2.3.1, vertex shaders are responsible for processing vertices and fragment

shaders are responsible for calculating colors. The compute shader, however,

is different in that it serves no specific purpose. The advantage of a compute

shader is its ability to run arbitrary calculations and leverage the processing

power and parallelization of the GPU [30]. Therefore, compute shaders are

incredibly useful for simulations [4, 31, 32]. In practice, a compute shader

operates by processing data from an input buffer, and then generating results

to an output buffer. For instance, in ApolloSim, the input buffer is populated

with information about the sensor and environment, and the output buffer is

populated with synthetic lidar data.

13

2.3.3 Ray Tracing

Ray tracing is a rendering technique that is often used to simulate the

movement of light in an environment. Traditionally, many images are ren-

dered through rasterization, which determines which color each pixel is based

on objects in the scene. Rasterization also often employs lighting models that

attempt to emulate realistic lighting [33]. Ray tracing, however, actually at-

tempts to simulate the beams of light that reflect and refract throughout the

scene and into the camera. To do this, a beam is cast from each pixel on the

screen, as seen in Figure 2.4, and bounced around the scene; as the beam

bounces through the scene, it collides with various objects, picking up colors

along the way.

Figure 2.4: Beams of light are cast from each pixel and reflected off of items in the scene
[34].

14

Eventually, the beams stop reflecting and a color is determined for each

pixel. Although more expensive than traditional rendering techniques, ray

tracing can vastly improve the realism of a virtual scene [35]. In the context

of ApolloSim, ray tracing techniques are used to simulate the movement of

light beams emitted by the lidar sensor.

2.3.4 Bidirectional Reflectance Distribution Models

A bidirectional reflectance distribution model, or BRDF, is an equation

used to determine how much light reflects off of an opaque surface. BRDFs

are often used in computer graphics applications and are incredibly useful

for physics-based or photorealistic rendering. The fundamental concept of

a BRDF is simple. Given an incident angle, ωi, and a reflected angle, ωr,

return the percentage of light that is reflected.

fr(ωi, ωr) =
dLr(ωr)

dEi(ωi)
(2.3)

In the BRDF equation (Equation 2.3), dLr(ωr)
dEi(ωi)

represents the ratio of re-

flected radiance to incident irradiance. dLr(ωr) is the differential radiance,

which is the amount of light power that is emitted or reflected by a surface

given a reflected angle ωr, while dEi(ωi) is the differential irradiance, the

amount of light power that is incident on a surface given an incident angle

ωi. The BRDF equation is incomplete without a reflectance model, which is

15

how the radiance ratio is calculated [36].

There are numerous reflectance models available, and each one is useful for

different materials and scenarios. For example, the Lambertian model, shown

in Equation 2.4, is a simple model used for ideal matte materials that are

assumed to scatter light equally in every direction. Therefore, the Lambertian

model only accounts for the incident angle (L) and reflected angle (N) of the

beam, as well as the color C and initial intensity IL of the light [37].

BD = L ·NCIL = cos(α)IL (2.4)

The Lambertian model is capable of representing a simple, ideal material,

and of course, reflectance models can become much more sophisticated. The

Cook-Torrance model is an example of a microfacet model, which considers

the surface of a material to be composed of many tiny, flat facets, which each

reflect and obscure light. The model incorporates many physics approxima-

tions of how light interacts with these types of surfaces to account for the

microfacets.

rs =
D ∗G ∗ F

4 ∗ (n⃗ · l⃗) ∗ (n⃗ · v⃗)
(2.5)

The Cook-Torrance model, as shown in Equation 2.5, models the complex

interaction of light with surfaces through three primary components: the

microfacet distribution (D), which accounts for the orientation and density

16

of microfacets; geometric shadowing (G), addressing the occlusion of light as

it interacts with these microfacets; and Fresnel reflectance (F), quantifying

reflectance due to the Fresnel effect (see Appendix A.5 and Appendix A.6 for

more information). There are many different reflectance models, and each

has its own use cases [38].

17

Related Work

3.1 HELIOS++

In a paper called “Virtual laser scanning with HELIOS++: A novel take on

ray tracing-based simulation of topographic full-waveform 3D laser scanning”

[1], a virtual laser scanning simulator (a lidar simulator), called HELIOS++,

is introduced. It is an open-source, general purpose lidar simulation tool,

which is capable of performing static and mobile terrestrial lidar simulation

and aerial lidar simulation. The creators of HELIOS++ explain that users

can use HELIOS++ to create datasets, test their robot algorithms, as well as

determine the requirements for their lidar sensor. Winiwarter et al. stresses

the importance of a realistic simulation environment in addition to a robust

lidar simulation. While HELIOS++ does an excellent job at implementing

various lidar sensors for myriad scenarios, it only uses random, parameterized

noise for the sensor data.

18

3.2 A GPU-accelerated framework for simulating Li-

DAR scanning

In “A GPU-accelerated framework for simulating LiDAR scanning” [4],

Lopez et al. introduce a lidar simulation tool that utilizes a GPU, using

OpenGL compute shaders, for the computation. They present a parameter-

ized lidar simulation tool that is specifically built to generate large datasets

for training neural networks. For the virtual environment, they created their

own virtual forest from scratch, and labeled the scene so that the data can

be used for semantic segmentation. Additionally, they use a BRDF for each

model in the scene in order to determine the intensity of the backscatter from

the beam. They explain that they use a different reflection model for each

object in the scene, depending on which BRDF model is most suitable. For

example, they used the Cook-Torrance model, a BRDF model designed for

both specular and diffuse materials, for buildings in their scene, as buildings

consist of both diffuse and specular materials. Another example is the Oren-

Nayar model, which is designed for rough, diffuse materials, is applied to tree

canopies to accurately represent their textured and diffuse characteristics.

19

3.3 BlenSor: Blender Sensor Simulation Toolbox and

BlAInder Range Scanner

BlenSor is an extension for Blender, a widely used 3D computer graphics

software; BlenSor is capable of simulating various sensors within Blender,

including lidar sensors [5]. BlenSor excels in simulating realistic sensor prop-

erties, such as sensor noise and physical effects such as reflection, allowing for

realistic data generation. A major point Gschwandtner et al. make is that the

sensor simulation is closely related to ray tracing techniques used in computer

graphics. Additionally, they explain how they have implemented parametric

noise using a normal distribution. The mean and standard deviation of the

normal distribution is dependant on the material of the object.

BlAInder is another Blender-based simulator. BlAInder was specifically

developed for generating labeled point cloud datasets for semantic segmen-

tation models. The advantage of using BlAInder is the ability to quickly

generate large labeled point cloud datasets, as opposed to manually labeling

an existing dataset. The synthetic noise in BlAInder accounts for various

physical phenomena, such as atmospheric conditions and reflection and re-

fraction. A Gaussian distribution is used to sample the various parametric

noise models they employed [18].

20

3.4 Lidar Simulation for Robotic Application Develop-

ment

A PhD paper titled “Lidar Simulation for Robotic Application Develop-

ment: Modeling and Evaluation” [24] describes a new lidar and robotics

simulator meant for a robotics course at Carnegie Mellon. Tallavajhula de-

scribes the architecture of the simulator, providing a detailed description of

how they structured the simulator. The simulator is split into three parts:

sensor modeling, scene generation, and simulator evaluation. This simulator

takes a parametric approach to the sensor models, collects data from the real

world, and then uses distribution regression to match the parametric model

to the real world data.

A key difference between this paper and ApolloSim is how each approach

handles synthetic noise. “Lidar Simulation for Robotic Application Develop-

ment: Modeling and Evaluation” uses a non-parametric approach based on

noise observed in a variety of environments. This approach is different than

that of ApolloSim’s, which uses a parametric approach to synthetic noise

based on noise observed from a variety of materials.

21

3.5 LiDARsim: Realistic LiDAR Simulation by Lever-

aging the Real World

In a paper about a simulator titled “LiDARsim”, a virtual lidar sensor

simulator that uses a data-driven, deep learning approach to synthetic sensor

noise [9]. LiDARsim utilizes a traditional ray casting approach to lidar sim-

ulation, but then introduces noise with a deep learning model. The authors

observed that real lidar data typically had about 10% fewer points than the

simulated lidar; this is due to raydrop, which is when a beam is cast by the

sensor but never returns. Raydrop is introduced to the simulation via a deep

learning model that can predict when a ray is likely to be dropped. The re-

sulting data showed that LiDARsim significantly outperformed Carla [39], a

popular open-source simulator for autonomous driving research. This proves

that leveraging real data is imperative in closing the gap between simulation

and real-world environments.

3.6 Learning to Simulate Realistic LiDARs

The paper “Learning to Simulate Realistic LiDARs” introduces a novel

method for converting RGB images into lidar data, addressing the challenge

of accurately simulating lidar sensors. The authors highlight that traditional

simulators often fail to capture crucial aspects such as intensity values and

raydrop, due to the complex nature of environmental factors like material

22

reflectance and intricate geometries. They explain that many simulators

use basic lidar models that generate simple point clouds through raycast-

ing, which often does not include the nuances and intricacies of real lidar

data. More specifically, many basic lidar models do not properly simulate

ray drop or intensity values. This paper proposes a data-driven approach ca-

pable of simulating nuanced details and complex lidar data. Given an RGB

image, their model can predict which rays will be dropped as well as the

intensity values of the backscattered rays that are not dropped. The goal of

this paper was to overcome the limitations of existing simulators by offering

accurate predictions to raydrop and intensity values, which are essential for

realistic lidar simulations [10].

23

Implementation

4.1 Simulator Overview

4.1.1 Simulator Pipeline

ApolloSim consists of three sequential processes: sensor calibration, lidar

data calculation, and a visual display. The pipeline of ApolloSim, shown in

Figure 4.1, starts with the calibration process. The calibration process al-

lows the user to gather data using their target sensor to calibrate ApolloSim.

First, a lidar sensor is placed in front of a benchmark material in order to

collect data. The user can collect data from multiple benchmark materials.

The data is parsed and organized so that the simulation engine can process

it. Various key metrics, such as the average beam intensity, are calculated

by the simulation engine. After the noise for each material is characterized,

the engine can begin to simulate a virtual environment. Once the virtual en-

vironment is determined, ApolloSim can calculate the collision points of the

beams emitted from the lidar with the various objects in the environment,

allowing for the creation of a synthetic point cloud. Using the calibration

data, ApolloSim can mimic the noise in the real data in the simulated data.

After the point cloud is calculated, the graphics engine renders a visual rep-

24

resentation of the virtual environment, as well as the beams emitted by the

lidar. Each stage of the pipeline will be discussed in detail in further sections.

Subscriber

Publisher

ROS 2

RPLIDAR A1

Calibration
Data

Update
Envi-

ronment

Calculate
Beam

Collisions

Initialize
Environ-
ment and
Sensor

Analyze
Calibration

Data

Simulation Engine

Initialize
Graphics
Engine

Render
Envi-

ronment

Render
Beams

Graphics Engine

Simulation Loop

Figure 4.1: A detailed overview of the ApolloSim Pipeline

4.1.2 Technology Stack

ApolloSim is mainly implemented in a language called Odin. Odin is a

high-performance, simple, and data-oriented programming language. A key

advantage of Odin is its integration of graphics APIs, such as OpenGL and

Vulkan; very minimal setup is required to work with these APIs compared

to C++. In addition to Odin, the OpenGL shading language, GLSL, is

25

utilized for computation on the GPU. OpenGL shaders are written in GLSL;

ApolloSim’s graphics engine uses vertex and fragment shaders to render the

virtual environment and compute shaders to calculate the lidar beams. The

beam calculation is expensive and similar to a ray tracing algorithm, which

typically requires parallelized computation on a powerful device such as a

GPU.

The Slamtec RPLIDAR A1 sensor, as depicted in Figure 4.2, was used

for evaluating ApolloSim. ApolloSim utilizes ROS 2 [40], a robotics library,

to interface with the sensor and collect data from it. The ROS 2 portion of

ApolloSim consists of a Python package capable of collecting the lidar data

and publishing it to a file, as well as the RPLIDAR ROS 2 SDK [41], which

is used to connect to the sensor.

Figure 4.2: The Slamtec RPLIDAR A1 is a 360-degree, two-dimensional lidar with a scanning
range of 0.15 to 12 meters, and a 3960Hz sample frequency [42].

26

4.2 Sensor Calibration

4.2.1 Sensor Calibration Overview

The novelty of ApolloSim is the process in which it adapts its synthetic

noise to any sensor. In order to generate accurate synthetic noise, the sim-

ulation is calibrated by a real sensor. The sensor is positioned in front of a

benchmark material and captures data, which can be used to determine how

the sensor responds to the given material. As depicted in Figure 4.3, the

lidar sensor records data at multiple incident angles.

Figure 4.3: A render of a simulated lidar and wooden benchmark material. The beams (red
lines) are emitted from the lidar (black cylinder) and collide with the benchmark material
(wooden block) at various incident angles.

During the calibration process, information about how the sensor interacts

with that material at each angle is analyzed. Each material is associated

with a series of angles; for every angle, there is a corresponding set of points,

27

which are comprised of distance and intensity values. Using this data, we

can calculate the standard deviation and mean of both distance and intensity

values across all angles. This information defines how the lidar sensor reacts

to each specific material at various angles of incidence.

4.2.2 Interfacing with the Lidar

The first phase of calibrating the simulation is collecting data from a lidar

sensor, specifically the RPLIDAR A1, which was selected for experimental

purposes. The Slamtec RPLIDAR A1 is a two-dimensional, 360-degree lidar

sensor. The Slamtec RPLIDAR software development kit for ROS 2 was used

to interface with the sensor. The RPLIDAR SDK includes a ROS 2 node,

which records all incoming lidar data to a ROS 2 public data channel, also

known as a topic. Then, another ROS 2 node simply listens to the topic and

writes the relevant data, such as intensity values and distances, to a text file

(as described in Appendix A.2). The lidar only needs to run for a few seconds

to collect a sufficient amount of data for the calibration process. In addition

to writing the lidar data to a text file, the ROS 2 node also spawns a live,

overhead display of the data, as seen in Figure 4.4; this display helps the user

in setting up their calibration environment.

When the user launches the ROS 2 node, they are prompted for the name

of the benchmark material they are calibrating, the distance between the

sensor and the material, and the width of the material. After this information

28

Figure 4.4: The lidar is positioned at the center of the screen, where the two red guidelines
intersect. The white dots are points in the point cloud that are gathered by the sensor.

is provided, the live display adds guidelines to show which parts of the data

intersect with the benchmark material.

4.2.3 Sensor Calibration Implementation

In order to collect data on how the sensor interacts with a specific material,

the user runs a calibration script. The calibration script is given the a few

inputs specified by the user. First, the user must specify the details of the

benchmark material, as listed in Table 4.1. The user can specify these details

in a small GUI, as shown in Figure 4.6.

29

Figure 4.5: The green lines show the field of view of the sensor that senses the benchmark
material. The white points intersect with the benchmark material and will be used for the
calibration, while the grey points are the rest of the points that are subsequently dropped.

Input Description Data Type

Material Name The name of the material that the user

is calibrating for

string

Benchmark Distance The distance between the sensor and

the benchmark material

float

Benchmark Width The width of the benchmark material float

BRDF Type The type of BRDF to use: either Oren-

Nayar or Cook-Torrance

enum

Roughness Roughness index of the material float

Index of Refraction Index of refraction of the material float

Table 4.1: Inputs relevant to Benchmark Material for Sensor Calibration

30

Figure 4.6: The user can use a small tool to add, edit, and remove calibration materials.

The width and distance must be specified so that the calibration process

can determine which beams are hitting the benchmark material. The valid

beam angles are calculated by determining the maximum angle at which the

lidar’s beams are still making contact with the benchmark material. In Equa-

tion 4.1, the data from the lidar is filtered to only include the beams that

connect with the benchmark material, where w is the width of the bench-

mark material and d is the distance between the sensor and the benchmark

material.

Valid Angles = {θ ∈ Angles | θ < arctan(
w/2

d
)} (4.1)

Once the irrelevant angles are filtered out, the corresponding lidar data is

dropped. The remaining lidar data is compiled into a list of a custom data

structure named AngleData, which contains important information about the

31

beams cast at a specific angle, as presented in Table 4.2.

Attribute Description Data Type
Angle The angle of the beam for which the

data represents
float

Intensities List of beam intensity values collected
at this angle

float array

Mean Intensity Mean of the beam intensities float
Intensities Standard Deviation Standard deviation of beam intensities float
Distances List of beam distances collected at this

angle
float array

Mean Distance Mean of beam distances float
Distances Standard Deviation Standard deviation of beam distances float
Drop Rate The percentage of beams that never re-

turn to the sensor at this angle
float

Table 4.2: The AngleData Data Structure

A simple algorithm iterates through every beam cast by the lidar and

creates an AngleData object for each unique angle; after every beam is sorted,

the means, standard deviations, and drop rates are calculated for each angle.

This data will be used later on in order to determine how the beams interact

with each material in the simulation.

4.3 Graphics Engine

4.3.1 Graphics Engine Overview

To provide visual feedback for the simulation, ApolloSim has a graphics

engine that can render the lidar sensor and its surrounding environment in

real time. Additionally, the engine is able to display the beams that are cast

by the virtual lidar sensor. The graphics engine relies on the OpenGL APIs

32

and shaders for rendering. While quantitative analysis is important in a lidar

simulation, a visual, qualitative analysis is helpful as well.

Figure 4.7: A screenshot of ApolloSim’s graphics engine. The small cylinder in the middle
represents the lidar sensor, and the environment is made up solely of two cubes and a stop
sign.

The graphics engine is relatively bare-bones, with support for a few essen-

tial features. The engine offers support for three-dimensional meshes that are

either primitive shapes or custom geometry, as well as custom textures. The

user has the ability to adjust their viewpoint and navigate through the vir-

tual environment, enabling them to observe the simulation from any preferred

perspective.

4.3.2 Beam Rendering

The graphics engine is provided with a list of points that belong to the

point cloud generated by the virtual lidar. Each beam is rendered as a line,

where the first point is the origin of the beam, the lidar, and the second point

33

is the collision point of the beam. These beams are rendered as lines that

range from green to blue, where green represents a weaker intensity, and blue

represents a stronger intensity.

4.3.3 Calibration Data Rendering

In addition to the real-time virtual environment render, ApolloSim also

has a feature that allows the user to view the calibration data for a certain

material. When ApolloSim is launched with the argument viewer and a file

path, the engine will analyze the specified file and display a static view of

what the calibration data. This allows the user to see a visual representation

of how the sensor interacts with a specific material.

Figure 4.8: The static wall represents the benchmark material, and the beams represent the
data generated by the calibration.

The color of each beam is determined by its mean intensity value for a specific

angle. The cube is positioned at the same distance from the virtual sensor

as the actual real sensor is from the benchmark material, allowing the user

34

to explore the data for a benchmark material.

4.4 Simulation Engine

4.4.1 Simulation Engine Overview

In ApolloSim, the simulation engine is responsible for calculating synthetic

lidar data. This process begins after calibration data is acquired, at which

point the simulation engine employs a virtual model of the lidar in a virtual

environment to generate lidar data. The inputs to the simulation engine are

the lidar sensor specifications and the virtual environment, while the output

is a point cloud. The virtual lidar sensor is configured based on the user’s

real lidar sensor, while the virtual environment can be programmatically

configured to resemble an environment in which the lidar will be tested.

4.4.2 Simulation Engine Inputs

The user must input the specifications of the lidar sensor, as listed in

Table 4.3. For example, if the user was testing with a Slamtec RPLIDAR

A1, the virtual sensor would be programmed to have the same specifications

of a 0.15-meter to 12-meter working range, a 360-degree angular range, a

scan frequency of 5.5 KHz, and a sample frequency of 3960 Hz. The sensor

specifications are important for determining the quantity and positions of the

beams cast by the virtual lidar.

In addition to the lidar specifications, the user must specify an environ-

35

Input Description Data Type
Scan Frequency Total complete environment scans per

second
integer

Sample Frequency Total beams cast per second integer
Angular Range Maximum span of angles detectable by

the sensor
float

Working Range Maximum and minimum distance reli-
ably detectable by the sensor

float[]

Sensor Data Dimensions Whether the sensor collects one, two,
or three-dimensional data

int

Table 4.3: Parameters for the virtual lidar sensor

ment in which to test the lidar. Unlike many graphics engines that support

real-time manipulation of three-dimensional environments or environment

setup via configuration files, ApolloSim requires environments to be config-

ured through code. The user can add primitive shapes as well as custom

models in the Wavefront .obj file format.

4.4.3 Lidar Beam Calculation

Lidar Beam Calculation Overview

In order to generate a point cloud, the engine must calculate every beam

cast by the lidar and where they intersect with the environment. Some li-

dar sensors are capable of emitting over one million beams per second [43];

therefore, an efficient computation method is necessary. Parallelizing beam

calculation is the primary method for making ApolloSim more efficient. In

order to parallelize these calculations, all beams are calculated on the com-

puter’s GPU. A compute shader, as described in Section 2.3.2, is responsible

for these calculations.

36

Compute Shader Buffers

The first step in the lidar beam calculation process is gathering the relevant

data, as all the data for these calculations will eventually be stored in a buffer

that can be accessed by the compute shader. Important data such as details

about the environment, the directions and quantity of the beams cast by the

lidar, material data, and more, are sent to the compute shader for calculation.

Once all the relevant data is gathered, it is stored in a few buffers, as listed

in Table 4.4, that can be accessed by the compute shader. The compute

shader reads those buffers, and can now perform calculations on the GPU.

The compute shader loops through every beam direction in order to calculate

where it intersects with the environment; for more information, see Appendix

A.4.

Lidar Beam Intersection Point Calculation

The points at which the beams intersect with the virtual environment

are what make up the point cloud generated by the virtual lidar. In order to

calculate these points, an algorithm similar to ray tracing is employed. Every

beam that is cast by the lidar is checked against every item in the scene, and

the closest point of intersection between the beam and the environment is

determined to be the intersection point. Once the intersection point is found,

the next step is to find the intensity of the beam’s backscatter. This is where

the calibration data becomes important; using the material of the object the

37

Input Description Data Type
Simple Geometry A list of all basic geometric shapes in

the scene, including details about their
material and transformation matrix

SimpleGeometry[]

Complex Geometry A list of all complex geometric shapes
in the scene, including details about
their material and transformation ma-
trix

ComplexGeometry[]

Directions List of directions at which the lidar
emits a beam

vec3[]

Vertices List of all vertices in the scene float[]
Indices List of all vertex indices in the scene int[]
Materials List of all materials used in the scene Material[]
Seeds List of random numbers to be used as

seeds for sampling distributions
float[]

AngleData List of information about the lidar cali-
bration, including every angle for every
material

AngleData[]

Output Description Data Type
Output A list of vectors that contain the po-

sitions and intensities of the points in
the point cloud

vec4[]

Table 4.4: The compute shader accepts a number of inputs and generates an output. The
inputs are required to calculate the lidar beams, while the output is essentially a point cloud.

beam intersected with, along with the angle at which they intersected, the

compute shader can use the calibration data to determine the intensity of the

beam.

4.4.4 Synthetic Noise Calculation

Once each point is calculated, synthetic noise must be injected into the

data. As displayed in Figure 4.9, adding noise consists of potentially assigning

a new intensity value and a new location vector for each point.

38

Figure 4.9: The data from the lidar on the left has no noise at all; each location vector and
intensity value is exactly as expected. The data from the lidar on the right is noisy; some of
the locations and intensities of the points are incorrect.

Calculating the new distance value is simple. The distance value deter-

mined by the parameterized lidar model is modified by adding a random

value. The random value is determined by the incident angle and material

that the beam collides with. Using the standard deviation of the distances

for the incident angle and material, a random value is sampled from a normal

distribution and added to the distance, as shown in Equation 4.2.

Dnoisy = Dparameterized +N (0, σangle,material) (4.2)

Calculating the new intensity value is similar. The intensity value is de-

termined by the mean and standard deviation of intensity values for a given

incident angle and material. The intensity value is also sampled from a nor-

mal distribution, as shown in Equation 4.3.

39

Inoisy = N (µangle,material, σangle,material) (4.3)

For instance, consider that at an incident angle of 30 degrees on a wooden

surface, the lidar captures the following set of distance values: [1.0, 1.1,

0.9, 1.25], along with a matching set of intensity values: [0.75, 0.7,

0.8, 0.0]. Now in simulation, suppose a beam collides with a wooden ma-

terial at 30◦, with a distance of 5.0. Given the standard deviation of distance

values to be 0.129, the standard deviation of intensity values to be 0.327, the

mean of intensity values to be 0.563, and the drop rate to be calculated as

0.25, the new distance would be 5.0 + N (0, 0.129), the new intensity value

would be N (0.563, 0.327), and the beam would have a 25% chance of never

returning due to ray drop.

While calibrating materials, only a subset of all incident angles can be

measured, as shown in Figure 4.10. In simulation, there is a possibility of

a beam colliding with a surface at an incident angle that was not measured

during the calibration process. If this occurs, the BRDF model that was

specified by the user in the configuration file for the material is used to

determine the intensity of the beam.

4.4.5 BRDFs for Addressing Data Gaps

To calculate the intensity of backscattered light using a BRDF model, the

angle of incidence must be determined. The angle of incidence is calculated

40

Figure 4.10: This render shows two benchmark materials of varying lengths; there are more
collisions between the lidar beams and the wider benchmark material, and therefore, more
angles of incidence.

given the light vector (L) and the normal vector of the surface (N), as shown

in Equation 4.4

θi = arccos(L⃗ · N⃗) (4.4)

The Oren-Nayar reflectance model, presented in Equation 4.5, accounts for

the reflected angle (θr), the incident angle (θi), the azimuthal angles (ϕr−ϕi),

and the roughness of the material (σ) [44].

41

Lr(θr, θi, ϕr − ϕi;σ) =
ρ

π
E0 cos θi

[
C1(σ)+

cos(ϕr − ϕi)C2(α; β;ϕr − ϕi;σ) tan β+

(1− | cos(ϕr − ϕi)|)C3(α; β;σ) tan(
α + β

2
)
]

where

C1 = 1− 0.5
σ2

σ2 + 0.33

C2 =

0.45σ2

σ2+0.09
sinα if cos(ϕr − ϕi) ≥ 0

0.45σ2

σ2+0.09
(sinα− (2β

π
)3) otherwise

C3 = 0.125(
σ2

σ2 + 0.09
)(
4αβ

π2
)2

α = Max [θr, θi]

β = Min [θr, θi]

(4.5)

Fortunately, for the case of a two-dimensional lidar sensor, the Oren-Nayar

model can be simplified since the azimuthal angle difference is always 0, and

the viewpoint is essentially located in the same place as the light source.

Therefore, the Oren-Nayar model can be simplified to Equation 4.6. Now,

the intensity of light that is backscattered from a diffuse material can be

calculated.

42

Lr(θi, σ) = | cos θi|(C1(σ) + C2(σ) sin θi tan θi)

where

C1 = 1− 0.5
σ2

σ2 + 0.33

C2 =
0.45σ2

σ2 + 0.09

(4.6)

The Cook-Torrance model, which is useful for materials with a specular

reflection, is defined in Equation 2.5 and discussed in Appendix A.5. Similar

to the Oren-Nayar model, the Cook-Torrance model takes into account the

angle of incidence, material roughness, and index of refraction to determine

backscattered light.

4.5 Application Walk-Through

This section details the step-by-step process of using ApolloSim. For this

example, two materials were configured for simulation: wood and epoxy.

4.5.1 Calibrating the Simulation

The first step for using ApolloSim is gathering calibration data. To do

this, the user places their sensor in front of a benchmark material, as shown

in Figure 4.11.

Then, they can run the calibration script by launching the ROS 2 node.

43

Figure 4.11: The image on the left shows the lidar in front of a benchmark material made
of plywood, while the image on the right shows the lidar in front of the epoxy resin tabletop
material.

The calibration script will prompt the user regarding information about the

benchmark material, as shown in Figure 4.12.

Figure 4.12: The user can specify the name, distance, and width of their benchmark material.

The calibration script then opens a visual representation, shown in Figure

4.13, of what the lidar is sensing, with green guidelines to show the user

which points are expected to be colliding with the benchmark material and

will be used for calibration. These guidelines are calculated using the width

and distance values collected from the user, as displayed in Figure 4.12.

The sensor should run for a few seconds in order to get a good sample

44

Figure 4.13: The left image is the live view of the lidar in front of the wooden benchmark
material, while the right is of the epoxy benchmark material

size. Once the user decides they have gathered enough data, they can close

the script, and a text file with the data is generated. The user may repeat

this process for as many materials as they’d like.

4.5.2 Configuring the Simulation

In order for ApolloSim to know which calibration data to use, the user must

provide a configuration file. The user can run the configuration file editor GUI

and enter the epoxy and wood material configurations, as displayed in Figure

4.14. Once the configuration file is made, ApolloSim can now calibrate the

simulation to properly represent those materials in the simulation.

4.5.3 Running the Simulation

Finally, the user can launch the simulation. There are two modes for

ApolloSim: the viewer and the simulation. The viewer, as mentioned in

Section 4.3.3, allows the user to see the calibration data for an individual

45

Figure 4.14: The user can enter the wood and epoxy materials into the configuration editor

material. The viewer can simply be launched by adding viewer <material

name> to the arguments while launching ApolloSim. In this case, the user can

run this command: odin run . -- ./data.config viewer wood to see

the calibration data for the wood material, and this command:odin run .

-- ./data.config viewer epoxy to see the calibration data for the epoxy

material. This allows the user to verify that their calibration data makes

sense. Figure 4.15 shows the viewers for the wood and epoxy materials.

After verifying the calibration data, the user can also launch the simu-

lation. For now, the environment must be built by modifying the code of

ApolloSim; thus, in this case, a pre-built example scene is tested. The exam-

ple scene shown in Figure 4.16 consists of one wooden cube and one epoxy

cube. Once the user launches the simulation, they can move the camera

46

Figure 4.15: The user can view what their calibration data looks like. Of course, the rough,
diffuse wood material has a much better response at larger incident angles than the shiny,
specular epoxy material.

around the scene and observe the lidar data in real time.

Figure 4.16: These four screenshots of ApolloSim show the simulation environment at various
viewing angles and positions.

47

Results and Evaluation

5.1 Evaluation Overview

A lidar sensor simulation tool would be useless if it doesn’t properly em-

ulate the behavior of a lidar in the real world. To prove the authenticity

of ApolloSim, several tests have been conducted. Each test shows that the

data that ApolloSim generates closely resembles the data that is output by

the sensor. As mentioned in Section 4.1.2, the RPLIDAR A1 was used for

calibrating and evaluating ApolloSim.

5.2 Validating Key Characteristics

As described in Section 2.1.5, there are a few key characteristics that define

the lidar data: raydrop rate, mean intensity, intensity variance, and distance

variance. To validate that ApolloSim can properly generate data similar to

the calibration data, five materials were calibrated and tested in simulation.

As shown in Figures 5.1, 5.2, 5.3, and 5.4, the mean and standard deviation of

intensity values, the raydrop rate, and the standard deviation of the distance

values all experience similar distributions in the real lidar measurements and

the simulation data.

48

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00
Plywood

Simulation

Calibrated

0.0 0.2 0.4 0.6 0.8
0.00

0.25

0.50

0.75

1.00
Epoxy

Simulation

Calibrated

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.00

0.25

0.50

0.75

1.00
Brushed Aluminum

Simulation

Calibrated

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00
Shiny Aluminum

Simulation

Calibrated

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.00

0.25

0.50

0.75

1.00
Frosted Glass

Simulation

Calibrated

Mean Intensity by Angle

M
ea
n
In
te
n
si
ty

Lidar Beam Angle (radians)

Figure 5.1: For each material, the distribution of intensity values across every angle of
measurement is similar. As expected, at high incident angles, the intensity values generally
drop.

49

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00
Plywood

Simulation

Calibrated

0.0 0.2 0.4 0.6 0.8
0.00

0.25

0.50

0.75

1.00
Epoxy

Simulation

Calibrated

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.00

0.25

0.50

0.75

1.00
Brushed Aluminum

Simulation

Calibrated

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00
Shiny Aluminum

Simulation

Calibrated

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.00

0.25

0.50

0.75

1.00
Frosted Glass

Simulation

Calibrated

Standard Deviation of Intensity by Angle

S
ta
n
d
ar
d
D
ev
ia
ti
on

of
In
te
n
si
ty

Lidar Beam Angle (radians)

Figure 5.2: For each material, the distribution of standard deviation values for the intensity
values across every angle of measurement is similar.

50

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00
Plywood

Simulation

Calibrated

0.0 0.2 0.4 0.6 0.8
0.00

0.25

0.50

0.75

1.00
Epoxy

Simulation

Calibrated

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.00

0.25

0.50

0.75

1.00
Brushed Aluminum

Simulation

Calibrated

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00
Shiny Aluminum

Simulation

Calibrated

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.00

0.25

0.50

0.75

1.00
Frosted Glass

Simulation

Calibrated

Raydrop Rate by Angle

D
ro
p
R
at
e

Lidar Beam Angle (radians)

Figure 5.3: For each material, the distribution of drop rates across every angle of measure-
ment is similar.

51

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

Plywood

Simulation

Calibrated

0.0 0.2 0.4 0.6 0.8
0.00

0.02

0.04

Epoxy

Simulation

Calibrated

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.00

0.02

0.04

Brushed Aluminum

Simulation

Calibrated

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

Shiny Aluminum

Simulation

Calibrated

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.00

0.02

0.04

Frosted Glass

Simulation

Calibrated

Standard Deviation of Distance by Angle

S
ta
n
d
ar
d
D
ev
ia
ti
on

of
D
is
ta
n
ce

Lidar Beam Angle (radians)

Figure 5.4: For each material, the distribution of standard deviation values for the distances
across every angle of measurement is similar. The distance readings become more volatile as
the incident angle increases. For the Plywood and Epoxy, the variance drops to zero when
the incident angle gets too high as the rays are consistently dropped.

52

5.3 Improved Accuracy of ApolloSim Over Parametric

Models

As mentioned in Sections 2.1.5 and 2.2.2, many lidar simulations depend

on parametric models to generate realistic synthetic noise. Some parametric

models apply a Gaussian distribution to randomly adjust intensity and dis-

tance values, along with raydrop [1, 23]. Other models might utilize BRDFs

to simulate interactions between the lidar sensor and various materials [4].

ApolloSim incorporates BRDFs along with calibration data to generate re-

alistic sensor noise. Figure 5.5 shows a comparison between the plywood

and epoxy benchmark materials against their corresponding BRDF models.

The plywood material was compared to a simulation using the Oren-Nayar

BRDF, as plywood is a rough, diffuse material, while the epoxy material was

compared to a simulation using the Cook-Torrance BRDF, as it is a diffuse

material with a specular component.

Figure 5.5 displays a comparison between two simulation types: a stan-

dard BRDF simulation yielding values between 0 and 1, and a binary BRDF

simulation yielding values of either 0 or 1. Given that the lidar sensor used

to test ApolloSim only reads binary intensity values, it is important to look

at both simulation types. The binary simulation should show a stronger re-

semblance to the calibrated noise, however, the continuous BRDF simulation

offers insight into its distribution. Given a sensor with the ability to produce

53

continuous intensity values, the calibrated values would be more likely to

have a stronger correlation with the standard BRDF simulation.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Plywood vs Oren-Nayar

Calibration

Simulation

Oren-Nayar BRDF

Binary Oren-Nayar BRDF

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

Epoxy vs Cook-Torrance

Calibration

Simulation

Cook-Torrance BRDF

Binary Cook-Torrance BRDF

Comparing BRDFs to Calibrated Noise

M
ea
n
In
te
n
si
ty

Lidar Beam Angle (radians)

Figure 5.5: ApolloSim’s noise resembles the noise in the real world much closer than the
simulations that just use BRDFs. The roughness and index of refraction values were chosen
based on photoscans provided by Quixel Megascans, a public, high-quality 3D scan library
[45].

Discrepancies between the BRDF simulation results and actual sensor data

appear for two reasons. The first potential issue is the selection of incorrect

BRDF parameters (in this case, roughness and index of refraction) for the ma-

terials being tested. Ideally, testing materials with precisely known BRDF

54

parameters would help; this can be done by either using materials from a

BRDF database [46] or by measuring those parameters manually. The sec-

ond issue might be the intrinsic noise present in the lidar sensor itself. If a

traditional BRDF simulation were to be implemented, an additional model

would be required to simulate the intrinsic noise of the sensor.

ApolloSim aims to fix both of these issues with calibrated noise. As illus-

trated in Figure 5.5, ApolloSim demonstrates superior performance compared

to a simplistic BRDF-based approach, as the calibrated noise also accounts

for the intrinsic noise of the sensor. That being said, BRDFs are still in-

credibly powerful for modeling light transfer, and ApolloSim utilizes them to

address gaps in the calibration data, as discussed in Section 4.4.5.

5.4 Efficacy of BRDFs in Addressing Data Gaps

A benchmark material is used to calibrate ApolloSim for simulating that

specific material. ApolloSim collects information about how the lidar sensor

reacts to the material at multiple different incident angles. Ideally, this cal-

ibration data would include all incident angles, ranging from zero to ninety

degrees. However, as depicted in Figure 4.10, it would be nearly impossible

to collect data on all incident angles. In order to fill the gaps in the data, a

BRDF simulation model is used. Figure 5.6 demonstrates that using a BRDF

model is a viable way to fill in the gaps in the calibration data.

55

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.2

0.4

0.6

0.8

1.0

Plywood and Oren-Nayar

Simulation

BRDF

BRDF Binary

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.2

0.4

0.6

0.8

1.0

Epoxy and Cook-Torrance

Simulation

BRDF

BRDF Binary

BRDFs for Addressing Data Gaps

M
ea
n
In
te
n
si
ty

Lidar Beam Angle (radians)

Figure 5.6: The binary BRDF distributions match ApolloSim’s distribution relatively closely,
which means that a BRDF model could be used to address missing incident angles in the
calibration data. Additionally, the slight rise at the end of the BRDF curve for the epoxy
material is attributed to the Fresnel Effect (see Appendix A.6).

While Section 5.3 shows that ApolloSim’s calibrated noise performs better

than a standard BRDF simulation model, ApolloSim still uses BRDFs to fill

in data gaps. The key difference between just using BRDFs and using them

in conjunction with calibrated noise is the selection of BRDF parameters. For

Figure 5.6, the BRDF parameters for each material were chosen such that

56

they resemble the distribution of the calibration noise, instead of choosing

parameters based on third-party data.

5.5 Qualitative Analysis of ApolloSim

Qualitative Tests Overview

The results presented above quantitatively demonstrate that ApolloSim

can successfully generate accurate lidar data. Because point clouds are intu-

itively comprehensible in three-dimensional space, a qualitative analysis was

also conducted to further demonstrate ApolloSim’s accuracy. In these qual-

itative tests, two test environments were set up and captured by the lidar

sensor. Then, the same environments were recreated in simulation, and cap-

tured by a virtual lidar sensor. The real data has been visually compared to

the synthetic data.

One of the major challenges while testing a lidar simulation is creating an

accurate representation of the real world [1, 24]. Even if the model for simu-

lating the sensor is perfect, if the virtual environment around it is inaccurate,

the resulting data will look wrong. Recreating a realistic environment from

scratch is an entirely different project on its own. Because of this limita-

tion, simple objects were arranged into simple shapes in order to ensure that

the virtual recreation of the environment could be as accurate as possible.

Two distinct tests were performed to compare the synthetic data with actual

data. These tests employed boards made of wood and foam arranged in var-

57

ious configurations; the wood and foam materials were calibrated as shown

in Figure 5.7.

Figure 5.7: Wood and foam were configured for the qualitative tests.

Figure 5.8 shows the calibration data for the foam material, and inter-

estingly, every measured incident angle has an average intensity of exactly

100%. The sensor did not experience any raydrop with the foam material,

even at extreme incident angles of close to 75 degrees.

Figure 5.8: The foam material did not cause the sensor to drop any rays.

58

Qualitative Test 1

As displayed in Figure 5.9, the first test used three foam pads arranged

in a zigzag shape as the test object. This was recreated as a virtual test

environment in ApolloSim using two cubes, as shown in Figure 5.10. Mea-

surements of the real environment were taken to ensure that the simulated

version was as accurate as possible. Finally, Figure 5.11 shows the data from

real environment.

Figure 5.9: Three foam pads were arranged in a zigzag shape for the first qualitative test.

59

Figure 5.10: Two cubes were arranged to mimic the configuration of the three foam boards.

Figure 5.11: A render of the data gathered in the first test.

Finally, the data from the real world and ApolloSim were compared in

Figure 5.12. While there are some minor discrepancies between the two

datasets, the overall patterns are consistent. The differences in the data are

likely due to the fact that the virtual environment recreated in ApolloSim

60

does not perfectly mimic the environment in the laboratory.

Figure 5.12: The left side shows the data from the real world, and the right side shows data
generated by ApolloSim. The data accurately represents the zigzag shape, and has a similar
pattern where points get more sparse at higher incident angles.

Qualitative Test 2

The second test used two foam boards and a wooden board, arranged in

the shape of a “U”, as shown in Figure 5.13. This environment was also

created in ApolloSim using three cubes, as shown in Figure 5.14. Finally, the

data from the real world is shown in Figure 5.15.

61

Figure 5.13: The “U”-shaped structure created for the second qualitative test.

Figure 5.14: Three cubes, one made of wood and the other two made of foam, were used to
recreate the shape of the test environment.

62

Figure 5.15: A render of the data gathered in the second test.

The data from the real world and the data generated by ApolloSim were

compared, as shown in Figure 5.16. Once again, there are some minor discrep-

ancies that are likely present due to an unfaithful recreation of the real-world

test environment. For example, in the real-world data, the points intersecting

with the foam panel on the right side clearly indicate that the foam panel is

not a perfectly flat object; however, in simulation, the foam panel was repre-

sented as a perfectly flat object. Therefore, the real-world data has a small

curve in it, while the simulation data is perfectly straight, as demonstrated

in Figure 5.17.

The similarities in the data highlight ApolloSim’s ability to accurately

simulate how a lidar sensor interacts with various objects and materials. For

example, the incident angles at which the sensor experiences raydrop on the

wooden material are extremely similar in the simulation and the real world.

As noted in Section 4.4.5, ApolloSim employs a BRDF for larger incident

63

angles that were not accounted for during the calibration process. The con-

sistency in raydrop between the simulated and real-world data confirms the

accuracy of both the calibrated noise as well as the effectiveness of the BRDF

method for filling in data gaps.

Figure 5.16: The data from the real world is shown on the left, while the data generated by
ApolloSim is on the right.

Overall, the qualitative tests confirm that ApolloSim can accurately create

synthetic point clouds for complex environments with multiple materials.

While the data is not perfectly accurate, a major factor for the discrepancies

has to do with imperfect virtual environments.

64

Figure 5.17: The real data, on the bottom, has a slight curve, while the simulated data, on
top, is perfectly straight. Additionally, on the wooden material, the simulated and real-world
data demonstrate raydrop in the same locations.

65

Conclusions and Future Work

6.1 Conclusions

In this thesis, I have introduced a novel lidar simulation methodology

that is designed to enhance the accuracy and realism of synthetic lidar data

through data-driven calibration. Unlike other methodologies that rely on

either purely parametric approaches or complex nonparametric models such

as those based on deep learning, ApolloSim fits in the middle and uses data-

driven parametric models. It offers a nuanced simulation process that is

not only more accurate than conventional parametric models but also more

accessible and less resource-intensive compared to deep learning alternatives.

ApolloSim is composed of three integral components: calibration, simula-

tion, and visualization. Users can calibrate their target sensor with selected

benchmark materials that they would like to simulate. Then, they can set

up a virtual environment to test the virtual lidar, and then finally, they can

observe their simulation run in real-time.

ApolloSim performs well against traditional parametric models that use

BRDFs to simulate light rays, indicating that choosing standard BRDF pa-

rameters may not suit the target sensor. However, ApolloSim does use

BRDFs to fill the gaps in the calibration data. More specifically, by us-

66

ing a careful selection of BRDF parameters tailored to the characteristics of

the target sensor, ApolloSim can accurately fill gaps in calibration data using

BRDF models.

Compared to other lidar simulations that primarily focus on either ad-

vanced parametric or nonparametric noise models, ApolloSim carves out a

distinctive niche. ApolloSim has the capacity to generate data-driven noise

more quickly and with fewer resources than other data-driven approaches

while also delivering data with greater accuracy than standard parametric

simulation techniques. A data-driven simulation such as ApolloSim can be

crucial for various testing environments, particularly in the development of

autonomous vehicles. Autonomous vehicles often encounter diverse and com-

plex scenarios, such as navigating among complex geometries and materials

found on buildings or other cars. ApolloSim offers a detailed method for

predicting and analyzing the performance of specific target lidar sensors, en-

hancing the precision of sensor evaluations.

To evaluate ApolloSim, the simulation underwent calibration for five ma-

terials, and the resulting data was analyzed to verify that the simulation

closely resembled real life. The results of the experiments with ApolloSim

suggest that using an actual lidar sensor to calibrate a lidar simulation can

significantly improve the accuracy of the synthetic data generated by the

simulation. While ApolloSim is not without limitations and the potential

for further enhancement remains, the rigorous testing of its core concept has

67

conveyed the validity of this approach.

6.2 Future Work

To effectively enhance the performance and user experience of ApolloSim,

several key aspects of ApolloSim have been identified for potential improve-

ment and several new features have been formulated. These enhancements

aim to refine both the calibration and simulation aspects of ApolloSim, en-

suring greater accuracy, efficiency, and versatility in future iterations.

6.2.1 Improving the Current Features of ApolloSim

Graphics Engine Integration

ApolloSim’s graphics engine was developed from the ground up using Odin

and OpenGL. Building the engine from scratch allowed for complete control

over how ApolloSim worked. However, as the primary aim of this thesis was

not to delve into the intricacies of building a graphics engine, ApolloSim

was left with a bare-bones graphics engine. Consequently, the engine lacks

several advanced features, most notably shading and easily configurable envi-

ronments. Given these limitations, it would be worth integrating ApolloSim

into a more sophisticated, pre-existing engine like Blender or Unreal Engine.

These engines offer superior optimization and a wealth of features that would

greatly enhance ApolloSim’s user experience and functionality.

68

Automation of Calibration Process

The current calibration process is clunky and prone to error. The dis-

tance between the lidar sensor and the benchmark material, the width of the

material, and the angle of the material with respect to the lidar sensor are

among the measurements that are susceptible to human error. The ability

to automatically detect the width and distance of the benchmark materials

would greatly improve the speed and accuracy of calibration. Another major

improvement would be to allow the user to calibrate multiple materials at

once, by specifying to the calibration script where each benchmark material

is relative to the sensor.

Fixing Overfitting

ApolloSim relies heavily on calibration data to generate synthetic noise.

This introduces the risk of overfitting the simulation to a specific piece of

wood, instead of the specific type of material. For instance, if the wooden

material used in my experiments features a unique dent or blemish, the simu-

lation might inaccurately propagate these anomalies. This would mean that

the noise profile for all wood is tailored to a particular specimen instead of

the material as a whole. This would be more limiting when the user only has

access to substandard benchmark material samples. Additionally, the data

may be overfitted due to the possibility of the sensor reacting differently to a

material at various distances. A potential solution could be to use multiple

69

benchmark materials at various distances to represent a single material type

within the simulation, which would give a better representation of the aver-

age response to that material. Additionally, smoothing the calibration data

curves could aid in achieving a more generalized representation of materials,

thereby improving ApolloSim’s accuracy across a broader range of scenarios.

Path Tracing for Beam Calculation

In ApolloSim, the intensity value of a simulated beam is determined solely

by its collision point. For instance, if a beam collides with a metal object,

ApolloSim calculates the intensity based on the properties of that metal.

However, in reality, light reflects off the metal surface, scatters, and may

bounce several times before potentially returning to the sensor, introducing

noise to the signal. Simulating this complex behavior accurately would be

computationally expensive. Nonetheless, techniques like Monte Carlo Path

Tracing [36], a widely used ray tracing method, offer a way to approximate

this process. In addition to reflecting off of surfaces, light also refracts through

surfaces. Refraction is currently not simulated in ApolloSim, but could be an

important aspect to generating lidar data in environments with transparent,

refractive materials such as glass and water. If refraction were to be imple-

mented, a bidirectional scattering surface reflectance distribution function,

also known as a BSSRDF [36], would be used instead of a BRDF in order to

model how light reflects and refracts for various materials.

70

6.2.2 Additional Features for ApolloSim

New Lidar Types

Currently, ApolloSim is equipped to calibrate and simulate two-dimensional,

terrestrial lidar sensors. To extend ApolloSim’s capabilities to three-dimensional

lidar sensors, the calibration process must be modified to account for az-

imuthal angles. Moreover, ApolloSim could potentially support more than

just terrestrial lidar sensors. Adding support for aerial, satellite, and even

bathymetric lidar sensors could significantly broaden ApolloSim’s versatil-

ity. However, adapting the calibration process for these sensors could be a

challenge.

Simulating Unknown Materials

ApolloSim is currently confined to only simulating materials that have

been calibrated by the user. Implementing the functionality to simulate un-

known, uncalibrated materials would significantly increase the adaptability

of ApolloSim. Ideally, this would involve melding data derived from the cal-

ibration phase with existing BRDF models to estimate the sensor’s response

to new materials. For example, if a user calibrated their sensor on a concrete

wall and wishes to simulate a stone wall, the sensor’s response to the con-

crete could serve as a baseline dataset for simulating rough, diffuse materials.

By examining the differences in the BRDF parameters between concrete and

stone, one can adjust the baseline dataset to approximate the characteristics

71

of the stone wall. This would allow for a more generalized calibration pro-

cess; instead of having to calibrate for every material in existence, one would

calibrate for a few unique materials and then use that as a baseline for all

other similar materials.

Material Identification

Finally, an intriguing potential capability of ApolloSim would be its abil-

ity to enable sensors to identify materials based on their response patterns.

ApolloSim possesses data on how the sensor reacts to various materials; this

information could potentially be utilized to identify unknown materials based

on their response to the sensor. Given this potential feature, ApolloSim would

be able to produce datasets that could be used to train models that can rec-

ognize materials given a point cloud.

72

Appendix A: Additional Information

A.1 Why “ApolloSim”?

ApolloSim is heavily influenced by Helios++ [1]; Helios is the Greek god

of the sun, and this project was implemented in a language called Odin, the

Norse god. I decided to stick to the mythical god theme and went with

Apollo, the Greek god of the sun, light, truth and prophecy because Apol-

loSim ultimately simulates light and people use simulations to predict the

future.

A.2 ROS 2 Node for Collecting Lidar Data

As discussed in Section 4.2.2, data is collected from the RPLIDAR A1

via ROS 2 nodes and topics. First, the RPLIDAR ROS 2 SDK [41] is used

to launch a node that publishes a packet of data each time the lidar sensor

completes a full revolution. This packet of data is structured as a list of

angles, intensity values, distance values and some metadata, as shown in

Figure A.1. Of course, this data is unique to the RPLIDAR A1, as other

lidar sensors may have more data or a different structure.

The data packets generated by the RPLIDAR SDK are published to a

topic called \scan. A custom ROS 2 node was built to subscribe to and

73

Timestamp : 1707162652.862409387
s t a r t a n g l e : −3.1241393089294434

end ang le : 3 .1415927410125732
ang l e inc rement : 0.008714509196579456

range min : 0.15000000596046448
range max : 12 .0
ranges : array (' f ' , [i n f , i n f , 3 . 6 3 5 9 99917984009 . . .])
i n t e n s i t i e s : array (' f ' , [0 . 0 , 0 . 0 , 4 7 . 0 . . .])

Figure A.1: Raw lidar data

read the data from this topic to gather calibration data. In addition to

just collecting the data, the node launches a live view of the lidar data, as

described in Section 4.2.2. The lidar data is filtered such that only beams that

collide with the benchmark material are included, as explained in Equation

4.1. Finally, the data is parsed and written to a text file, where each line is

an angle, an intensity value, and a distance value. Figure A.2 displays the

structure of the calibration data for ApolloSim.

0.11900000274181366 ,47.0 , −3.1241393089294434
0.11999999731779099 ,47.0 , −3.115424799732864
. . .
0 .5120000243186951 ,47.0 , −0.0043450165539979935
0 .5040000081062317 ,47 .0 ,0 .004369492642581463
. . .
0 .11800000071525574 ,47 .0 ,3 .1328782942146063
0 .11900000274181366 ,47 .0 ,3 .1415928034111857

Figure A.2: Processed lidar data for ApolloSim. The pattern is distance, intensity,

angle.

74

A.3 Propagation of Data from Calibration to Simula-

tion

The primary focus of ApolloSim is its use of calibration data in simulation.

The calibration data is analyzed by ApolloSim before being put to use in the

simulation engine. First, the calibration data is collected and stored in a text

file, as described in Appendix A.2. Then, the configuration file, as specified in

Section 4.5.2, is parsed and stored in a data structure called MaterialInput,

as displayed in Table A.1.

Attribute Description Data Type
Material Name The name of the material (e.g. wood,

epoxy, metal)
String

File Path File path of calibration data String
Distance Distance between the benchmark ma-

terial and lidar sensor
float

Width Width of the benchmark material float
BRDF The chosen BRDF for the material integer
Roughness Roughness of the material float
Index of Refraction Index of refraction of the material float
Material ID Each material is assigned a unique ID int

Table A.1: The MaterialInput data structure is used to store the materials that have been
calibrated by the user.

Once the configuration file is parsed and there exists a MaterialInput

object for each calibration file, ApolloSim parses the calibration data in order

to calculate the key characteristics of each material and organizes the data

into AngleData objects, as described in Section 4.2.3. Each material is stored

as a MaterialData object, as described in Table A.2.

75

Attribute Description Data Type
Material Name The name of the material (e.g. wood,

epoxy, metal)
String

Material ID Unique ID of the material int
Angles Data List of AngleData data structures AngleData[]
Mean Intensity Overall mean of intensity values float
Standard Deviation of Intensity Overall standard deviation of intensity

values
float

Standard Deviation of Distance Overall standard deviation of distance
values

float

BRDF The chosen BRDF for the material integer

Table A.2: The MaterialData data structure is used to store the materials and their cali-
bration data.

Finally, in order to send the calibration data to the GPU, the materials

must be simplified and flattened into one array. A new data structure called

GPUAngle, as seen in Table A.3, is specifically used to aggregate all of the

data in order to store it in a buffer for the compute shader. Along with

the data for each angle, a list of GPUMaterial objects, as shown in Table

A.4, is sent to the GPU. That way, the compute shader can cross-reference

a GPUAngle object with a GPUMaterial object in order to gain information

about the performance of the lidar at a specific angle for a specific material.

Attribute Description Data Type
Angle The incident angle (degrees) associated

with this data
float

Material ID Unique ID of the material int
Mean Intensity Mean of intensity values float
Standard Deviation of Intensity Standard deviation of intensity values float
Standard Deviation of Distance Standard deviation of distance values float
Drop Rate Percentage of rays dropped float

Table A.3: The GPUAngle data structure is used to flatten the calibration data into one array
that is easily accessible by the compute shader.

76

Attribute Description Data Type
ID Unique ID of the material integer
BRDF The BRDFmodel used for this material integer
Roughness The roughness of the material float
Index of Refraction The index of refraction of the material float
Real Material A flag to indicate if the material is

based on real calibration data
boolean

Table A.4: The GPUMaterial data structure is used to store the details about each material.

A.4 Compute Shader Pseudocode

The locations and intensity values of points in the synthetic point cloud

generated by ApolloSim are calculated using a compute shader, as discussed

in Section 4.4.3. Algorithm 1 shows the pseudocode for this process. In this

process, each beam is checked to see if there is an intersection with an object

in the scene; if there is, then the corresponding output is set.

Algorithm 1 Loop through each beam

1: procedure Main
2: directions← list of beam directions as vec3s
3: output← corresponding output variables as vec4s
4: for i← 0 to length of directions do
5: intersection← point where the beam intersects with an object
6: direction← directions[i]
7: for j ← 0 to length of objects in scene do
8: object← objects[j]
9: new intersection← getIntersectionResult(direction, object)
10: if distance(new intersection) < distance(intersection) then
11: intersection← new intersection
12: end if
13: end for
14: output[i]← intersection
15: end for
16: end procedure

The existence of an intersection between each beam and each item in

77

the scene has to be checked. Algorithm 2 shows the pseudocode for that

process. The first step is to find the closest intersection point between the

sensor and an object in the scene, using the getIntersection function. The

getIntersection function that is used in Algorithm 2 varies depending on

the object; for primitives, such as spheres and cubes, implicit equations are

used, as commonly done in ray tracing algorithms [38]. For complex meshes, a

different algorithm is employed, which checks each triangle in the mesh for an

intersection. The getIntersection function returns a IntersectionResult

data structure, which is detailed in Table A.5.

Attribute Description Data Type
Intersects Does this beam intersect with the ob-

ject?
bool

Point The point of intersection vec3
Intensity Intensity of the backscattered beam float
θi Incident angle of the intersection float
Uses BRDF Does this angle require a BRDF or does

it use calibration data?
bool

Table A.5: The IntersectionResult data structure is used to store the details regarding
an intersection between a beam and an object in the scene.

As described in Section 4.4.4, depending on the incident angle of collision

with the object, ApolloSim either utilizes the calibration data or a BRDF

to calculate the intensity. The calibration data is only used if the incident

angle of the collision is within the range of angles that are part of the cali-

bration data. Otherwise, the intensity is calculated using a BRDF function;

depending on the material, different BRDF functions are utilized.

78

Algorithm 2 Find intersection for a given beam

1: procedure Find Intersection
2: direction← beam directions as vec3
3: object← object to check beam intersection for
4: material← material of object
5: result← getIntersection(beam, object)
6: if result.intersects then
7: incident angle← incident angle of intersection
8: AngleData← getClosestAngle(incident angle)
9: if incident angle = AngleData.angle then
10: mean← AngleData.meanIntensity
11: stdev← AngleData.standardDevIntensity
12: result.intensity← sampleNormalDistribution(mean, stdev)
13: else
14: result.intensity← BRDF(incident angle, material)
15: end if
16: stdev← AngleData.standardDevDistance
17: point noise← sampleNormalDistribution(0, stdev)
18: result.point← result.point + point noise
19: end if
20: return result
21: end procedure

A.5 The Cook-Torrance Model

The Cook-Torrance model, as presented in Equation 2.5, is a great BRDF

model for rough materials with a specular component. Examples of this

type of material include metals, plastics, and even polished wood. Cook-

Torrance is composed of three main components: the microfacet distribution

(D), which accounts for the orientation and density of microfacets; geometric

shadowing (G), addressing the occlusion of light as it interacts with these

microfacets; and Fresnel reflectance (F), which accounts for reflection due to

the Fresnel Effect [38].

79

The Cook-Torrance model typically uses the following inputs: l⃗, the di-

rection of the light, v⃗, the direction from the collision point to the position

of the viewer (for a lidar sensor, the viewer and light direction are opposites,

since the lidar observes the beam of light from approximately where it was

cast), and n⃗, the normal of the surface. The microfacet distribution term, D,

defines the shape of the specular highlight. Popular choices for the microfacet

distribution include Blinn-Phong, Beckmann, and GGX. The GGX distribu-

tion, as seen in Equation A.1, is very popular and is the chosen distribution

for ApolloSim, as it produces a more accurate specular distributing than the

previous distributions at little extra cost [47].

D(⃗h) =
α2

π((n⃗ · h⃗)2(α2 − 1) + 1)2
(A.1)

The geometric attenuation term G, is the geometric attenuation of the

surface, which accounts for the attenuation caused by nearby microfacets, as

microfacets may occlude light from or reflect light to other microfacets. The

Schlick model is a popular choice for the geometric attenuation [47, 48], as

shown in Equation A.2 [49].

k = (roughness+ 1)2

G1(v⃗) =
n⃗ · v⃗

(n⃗ · v⃗)(1− k) + k

G(⃗l, v⃗, h⃗) = G1(⃗l) ∗G1(v⃗)

(A.2)

Finally, the Fresnel reflectance term F is the reflection of light due to the

80

Fresnel Effect. The most common approximation for the Fresnel Effect is

Schlick’s Approximation, as seen in Equation A.3 [49].

F = F0 + (1− F0) ∗ (1− (v⃗ · h⃗))

F0 =
(n− 1)

(n+ 1)2
(A.3)

A.6 The Fresnel Effect

The Fresnel Effect causes increased reflection at larger angles of incidence

for specular materials, particularly dielectrics. Intuitively, the higher the an-

gle of incidence, the less light should be reflected back to the viewer. However,

when light strikes a surface at a steep angle, the properties of the surface,

most notably the index of refraction, cause a change in the light’s electric

field, which leads to more light being reflected and less being refracted or

absorbed [50, 51].

81

Bibliography

[1] L. Winiwarter, A. M. E. Pena, H. Weiser, K. Anders, J. M. Sanchez,

M. Searle, and B. Höfle, “Virtual laser scanning with HELIOS++:

A novel take on ray tracing-based simulation of topographic 3D laser

scanning,” Jan. 2021, issue: arXiv:2101.09154 arXiv:2101.09154 [cs,

eess]. [Online]. Available: http://arxiv.org/abs/2101.09154

[2] Y. Li and J. Ibanez-Guzman, “Lidar for Autonomous Driving: The

Principles, Challenges, and Trends for Automotive Lidar and Perception

Systems,” IEEE Signal Processing Magazine, vol. 37, no. 4, pp. 50–61,

Jul. 2020. [Online]. Available: https://ieeexplore.ieee.org/document/

9127855/

[3] O. Risbøl and L. Gustavsen, “LiDAR from drones employed for mapping

archaeology – Potential, benefits and challenges,” Archaeological

Prospection, vol. 25, no. 4, pp. 329–338, Oct. 2018. [Online]. Available:

https://onlinelibrary.wiley.com/doi/10.1002/arp.1712

[4] A. Lopez, C. J. Ogayar, J. M. Jurado, and F. R. Feito, “A

GPU-Accelerated Framework for Simulating LiDAR Scanning,” IEEE

Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–18, 2022.

[Online]. Available: https://ieeexplore.ieee.org/document/9751040/

82

http://arxiv.org/abs/2101.09154
https://ieeexplore.ieee.org/document/9127855/
https://ieeexplore.ieee.org/document/9127855/
https://onlinelibrary.wiley.com/doi/10.1002/arp.1712
https://ieeexplore.ieee.org/document/9751040/

[5] M. Gschwandtner, R. Kwitt, A. Uhl, and W. Pree, “BlenSor:

Blender Sensor Simulation Toolbox,” in Advances in Visual Computing,

G. Bebis, R. Boyle, B. Parvin, D. Koracin, S. Wang, K. Kyungnam,

B. Benes, K. Moreland, C. Borst, S. DiVerdi, C. Yi-Jen, and J. Ming,

Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, vol. 6939,

pp. 199–208, series Title: Lecture Notes in Computer Science. [Online].

Available: http://link.springer.com/10.1007/978-3-642-24031-7 20

[6] “Gazebo.” [Online]. Available: https://gazebosim.org/about

[7] “Outsight 3D LiDAR Simulator.” [Online]. Available: https://www.

outsight.ai/

[8] “Adding Synthetic Noise.” [Online]. Available: https://www.nmr.mgh.

harvard.edu/PMI/toolbox/Documentation/pminoise.xhtml

[9] S. Manivasagam, S. Wang, K. Wong, W. Zeng, M. Sazanovich,

S. Tan, B. Yang, W.-C. Ma, and R. Urtasun, “LiDARsim: Realistic

LiDAR Simulation by Leveraging the Real World,” Jun. 2020,

issue: arXiv:2006.09348 arXiv:2006.09348 [cs]. [Online]. Available:

http://arxiv.org/abs/2006.09348

[10] B. Guillard, S. Vemprala, J. K. Gupta, O. Miksik, V. Vineet,

P. Fua, and A. Kapoor, “Learning to Simulate Realistic LiDARs,” Sep.

2022, issue: arXiv:2209.10986 arXiv:2209.10986 [cs]. [Online]. Available:

http://arxiv.org/abs/2209.10986

83

http://link.springer.com/10.1007/978-3-642-24031-7_20
https://gazebosim.org/about
https://www.outsight.ai/
https://www.outsight.ai/
https://www.nmr.mgh.harvard.edu/PMI/toolbox/Documentation/pminoise.xhtml
https://www.nmr.mgh.harvard.edu/PMI/toolbox/Documentation/pminoise.xhtml
http://arxiv.org/abs/2006.09348
http://arxiv.org/abs/2209.10986

[11] J. Zhang, F. Zhang, S. Kuang, and L. Zhang, “NeRF-LiDAR:

Generating Realistic LiDAR Point Clouds with Neural Radiance

Fields,” Jan. 2024, issue: arXiv:2304.14811 arXiv:2304.14811 [cs].

[Online]. Available: http://arxiv.org/abs/2304.14811

[12] Weng, Qihao, Advances in environmental remote sensing: sensors, algo-

rithms, and applications, first paperback edition ed. Boca Raton: CRC

Press, 2017, oCLC: 982649332.

[13] “What is LiDAR and How Does It Work?” [Online]. Available:

https://www.jouav.com/blog/what-is-lidar.html

[14] “Velodyne Lidar Puck.” [Online]. Available: https://velodynelidar.com/

products/puck/

[15] V. Mazzari, “What is LiDAR technology?” [Online]. Available:

https://www.generationrobots.com/blog/en/what-is-lidar-technology/

[16] “Lidar.” [Online]. Available: https://www.neonscience.org/

data-collection/lidar

[17] B. Jutzi and U. Stilla, “Range determination with waveform

recording laser systems using a Wiener Filter,” ISPRS Journal

of Photogrammetry and Remote Sensing, vol. 61, no. 2, pp.

95–107, Nov. 2006, number: 2. [Online]. Available: https:

//linkinghub.elsevier.com/retrieve/pii/S0924271606001080

84

http://arxiv.org/abs/2304.14811
https://www.jouav.com/blog/what-is-lidar.html
https://velodynelidar.com/products/puck/
https://velodynelidar.com/products/puck/
https://www.generationrobots.com/blog/en/what-is-lidar-technology/
https://www.neonscience.org/data-collection/lidar
https://www.neonscience.org/data-collection/lidar
https://linkinghub.elsevier.com/retrieve/pii/S0924271606001080
https://linkinghub.elsevier.com/retrieve/pii/S0924271606001080

[18] S. Reitmann, L. Neumann, and B. Jung, “BLAINDER—A Blender

AI Add-On for Generation of Semantically Labeled Depth-Sensing

Data,” Sensors, vol. 21, no. 6, p. 2144, Mar. 2021. [Online]. Available:

https://www.mdpi.com/1424-8220/21/6/2144

[19] JarlBallin89, “Maple Tree.” [Online]. Available: https://sketchfab.com/

3d-models/maple-tree-68bea58fd9a549a99cfa5d1c739c97a8

[20] DrCG, “Building No 6 form Tokyo Otemachi Building Pack.” [Online].

Available: https://skfb.ly/oyP8X

[21] Krzysztof Stolorz, “1929 BMW 3/15 (Dixi,

LP).” [Online]. Available: https://sketchfab.com/3d-models/

1929-bmw-315-dixi-lp-df5748546cdb429ba3c5038697e4a4d4

[22] GISGeography, “What is a Point Cloud?” [Online]. Available:

https://gisgeography.com/point-cloud/

[23] M. Gschwandtner, R. Kwitt, A. Uhl, and W. Pree, “BlenSor:

Blender Sensor Simulation Toolbox,” in Advances in Visual Computing,

G. Bebis, R. Boyle, B. Parvin, D. Koracin, S. Wang, K. Kyungnam,

B. Benes, K. Moreland, C. Borst, S. DiVerdi, C. Yi-Jen, and J. Ming,

Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, vol. 6939,

pp. 199–208, series Title: Lecture Notes in Computer Science. [Online].

Available: http://link.springer.com/10.1007/978-3-642-24031-7 20

85

https://www.mdpi.com/1424-8220/21/6/2144
https://sketchfab.com/3d-models/maple-tree-68bea58fd9a549a99cfa5d1c739c97a8
https://sketchfab.com/3d-models/maple-tree-68bea58fd9a549a99cfa5d1c739c97a8
https://skfb.ly/oyP8X
https://sketchfab.com/3d-models/1929-bmw-315-dixi-lp-df5748546cdb429ba3c5038697e4a4d4
https://sketchfab.com/3d-models/1929-bmw-315-dixi-lp-df5748546cdb429ba3c5038697e4a4d4
https://gisgeography.com/point-cloud/
http://link.springer.com/10.1007/978-3-642-24031-7_20

[24] Abhijeet Tallavajhula, “Lidar Simulation for Robotic Ap-

plication Development: Modeling and Evaluation,” p.

14724730 Bytes, 2018, artwork Size: 14724730 Bytes

Publisher: Carnegie Mellon University. [Online]. Avail-

able: https://kilthub.cmu.edu/articles/Lidar Simulation for Robotic

Application Development Modeling and Evaluation/6720428/1

[25] “Difference between Parametric and Non-Parametric Meth-

ods.” [Online]. Available: https://www.geeksforgeeks.org/

difference-between-parametric-and-non-parametric-methods/

[26] Georgios Nanos, “Differences Between a Parametric and Non-

parametric Model.” [Online]. Available: https://www.baeldung.com/

cs/ml-parametric-vs-non-parametric-models

[27] J. d. Vries, Learn OpenGL - Graphics programming: Learn modern

OpenGL graphics programming in a step-by-step fashion. Erscheinung-

sort nicht ermittelbar: Kendall & Welling, 2020.

[28] Patricio Gonzalez Vivo and Jen Lowe, The Book of Shaders. [Online].

Available: https://thebookofshaders.com/

[29] “Shader.” [Online]. Available: https://www.khronos.org/opengl/wiki/

Shader

86

https://kilthub.cmu.edu/articles/Lidar_Simulation_for_Robotic_Application_Development_Modeling_and_Evaluation/6720428/1
https://kilthub.cmu.edu/articles/Lidar_Simulation_for_Robotic_Application_Development_Modeling_and_Evaluation/6720428/1
https://www.geeksforgeeks.org/difference-between-parametric-and-non-parametric-methods/
https://www.geeksforgeeks.org/difference-between-parametric-and-non-parametric-methods/
https://www.baeldung.com/cs/ml-parametric-vs-non-parametric-models
https://www.baeldung.com/cs/ml-parametric-vs-non-parametric-models
https://thebookofshaders.com/
https://www.khronos.org/opengl/wiki/Shader
https://www.khronos.org/opengl/wiki/Shader

[30] “Compute Shader.” [Online]. Available: https://www.khronos.org/

opengl/wiki/Compute Shader

[31] H. Va, M.-H. Choi, and M. Hong, “Real-Time Cloth Simulation

Using Compute Shader in Unity3D for AR/VR Contents,” Applied

Sciences, vol. 11, no. 17, p. 8255, Sep. 2021. [Online]. Available:

https://www.mdpi.com/2076-3417/11/17/8255

[32] A. Junker and G. Palamas, “Real-time Interactive Snow Simulation

using Compute Shaders in Digital Environments,” in International

Conference on the Foundations of Digital Games. Bugibba Malta:

ACM, Sep. 2020, pp. 1–4. [Online]. Available: https://dl.acm.org/doi/

10.1145/3402942.3402995

[33] Brian Caulfield, “What’s the Difference Between Ray Tracing and

Rasterization?” [Online]. Available: https://blogs.nvidia.com/blog/

whats-difference-between-ray-tracing-rasterization/

[34] Henrik, “Ray trace diagram.” [Online]. Available: https://commons.

wikimedia.org/wiki/File:Ray trace diagram.svg

[35] Ray Tracing Gems. Springer Nature, 2021, oCLC: 1328776805.

[36] M. Pharr, W. Jakob, and G. Humphreys, Physically based rendering:

from theory to implementation, third edition ed. Cambridge, MA: Mor-

gan Kaufmann Publishers/Elsevier, 2017, oCLC: ocn936532273.

87

https://www.khronos.org/opengl/wiki/Compute_Shader
https://www.khronos.org/opengl/wiki/Compute_Shader
https://www.mdpi.com/2076-3417/11/17/8255
https://dl.acm.org/doi/10.1145/3402942.3402995
https://dl.acm.org/doi/10.1145/3402942.3402995
https://blogs.nvidia.com/blog/whats-difference-between-ray-tracing-rasterization/
https://blogs.nvidia.com/blog/whats-difference-between-ray-tracing-rasterization/
https://commons.wikimedia.org/wiki/File:Ray_trace_diagram.svg
https://commons.wikimedia.org/wiki/File:Ray_trace_diagram.svg

[37] “Lambertian reflectance.” [Online]. Available: https://en.wikipedia.

org/wiki/Lambertian reflectance

[38] Ian Dunn and Zoe Wood, Graphics Programming Compendium. [Online].

Available: https://graphicscompendium.com/index.html

[39] “CARLA Simulator.” [Online]. Available: https://carla.org//

[40] “ROS 2 Humble.” [Online]. Available: https://docs.ros.org/en/humble/

index.html

[41] “SLAMTEC LIDAR ROS2 Package.” [Online]. Available: https:

//github.com/Slamtec/sllidar ros2

[42] Slamtec, “RPLIDAR A1.” [Online]. Available: https://www.slamtec.ai/

product/slamtec-rplidar-a1/

[43] “Velodyne Lidar ULTRA Puck,” 2019. [Online]. Avail-

able: https://velodynelidar.com/wp-content/uploads/2019/12/63-9378

Rev-F Ultra-Puck Datasheet Web.pdf

[44] M. Oren and S. K. Nayar, “Generalization of Lambert’s reflectance

model,” in Proceedings of the 21st annual conference on Computer

graphics and interactive techniques - SIGGRAPH ’94. Not Known:

ACM Press, 1994, pp. 239–246. [Online]. Available: http://portal.acm.

org/citation.cfm?doid=192161.192213

[45] “Quixel Megascans.” [Online]. Available: https://quixel.com/megascans

88

https://en.wikipedia.org/wiki/Lambertian_reflectance
https://en.wikipedia.org/wiki/Lambertian_reflectance
https://graphicscompendium.com/index.html
https://carla.org//
https://docs.ros.org/en/humble/index.html
https://docs.ros.org/en/humble/index.html
https://github.com/Slamtec/sllidar_ros2
https://github.com/Slamtec/sllidar_ros2
https://www.slamtec.ai/product/slamtec-rplidar-a1/
https://www.slamtec.ai/product/slamtec-rplidar-a1/
https://velodynelidar.com/wp-content/uploads/2019/12/63-9378_Rev-F_Ultra-Puck_Datasheet_Web.pdf
https://velodynelidar.com/wp-content/uploads/2019/12/63-9378_Rev-F_Ultra-Puck_Datasheet_Web.pdf
http://portal.acm.org/citation.cfm?doid=192161.192213
http://portal.acm.org/citation.cfm?doid=192161.192213
https://quixel.com/megascans

[46] W. Matusik, H. Pfister, M. Brand, and L. McMillan, “A

data-driven reflectance model,” ACM Transactions on Graphics,

vol. 22, no. 3, pp. 759–769, Jul. 2003. [Online]. Available:

https://dl.acm.org/doi/10.1145/882262.882343

[47] Brian Karis, “Real Shading in Unreal Engine 4.” [On-

line]. Available: https://cdn2.unrealengine.com/Resources/files/

2013SiggraphPresentationsNotes-26915738.pdf

[48] B. Walter, S. R. Marschner, H. Li, and K. E. Torrance,

“Microfacet Models for Refraction through Rough Surfaces,” Rendering

Techniques, p. 12 pages, 2007, artwork Size: 12 pages ISBN:

9783905673524 Publisher: [object Object]. [Online]. Available: http:

//diglib.eg.org/handle/10.2312/EGWR.EGSR07.195-206

[49] C. Schlick, “An Inexpensive BRDF Model for Physically-based

Rendering,” Computer Graphics Forum, vol. 13, no. 3, pp. 233–246,

Aug. 1994. [Online]. Available: https://onlinelibrary.wiley.com/doi/10.

1111/1467-8659.1330233

[50] Greg A. Smith, “Fresnel Equations,” The University of Arizona

Wyant College of Optical Sciences. [Online]. Available: https:

//webs.optics.arizona.edu/gsmith/Fresnel.html

[51] “Fresnel equations.” [Online]. Available: https://en.wikipedia.org/wiki/

Fresnel equations

89

https://dl.acm.org/doi/10.1145/882262.882343
https://cdn2.unrealengine.com/Resources/files/2013SiggraphPresentationsNotes-26915738.pdf
https://cdn2.unrealengine.com/Resources/files/2013SiggraphPresentationsNotes-26915738.pdf
http://diglib.eg.org/handle/10.2312/EGWR.EGSR07.195-206
http://diglib.eg.org/handle/10.2312/EGWR.EGSR07.195-206
https://onlinelibrary.wiley.com/doi/10.1111/1467-8659.1330233
https://onlinelibrary.wiley.com/doi/10.1111/1467-8659.1330233
https://webs.optics.arizona.edu/gsmith/Fresnel.html
https://webs.optics.arizona.edu/gsmith/Fresnel.html
https://en.wikipedia.org/wiki/Fresnel_equations
https://en.wikipedia.org/wiki/Fresnel_equations

ProQuest Number:

INFORMATION TO ALL USERS
The quality and completeness of this reproduction is dependent on the quality

and completeness of the copy made available to ProQuest.

Distributed by ProQuest LLC ().
Copyright of the Dissertation is held by the Author unless otherwise noted.

This work may be used in accordance with the terms of the Creative Commons license
or other rights statement, as indicated in the copyright statement or in the metadata

associated with this work. Unless otherwise specified in the copyright statement
or the metadata, all rights are reserved by the copyright holder.

This work is protected against unauthorized copying under Title 17,
United States Code and other applicable copyright laws.

Microform Edition where available © ProQuest LLC. No reproduction or digitization
of the Microform Edition is authorized without permission of ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346 USA

31295713

2024

	Introduction
	Motivation
	Novel Approach to Lidar Simulation

	Background Information
	Lidar Sensor Functionality
	Time of Flight
	Lidar Sensor Specifications
	Beam Emission
	Point Clouds
	Key Characteristics of Lidar Data

	Simulation
	Parametric vs Nonparametric Simulation
	Synthetic Noise

	Computer Graphics
	OpenGL
	Compute Shaders
	Ray Tracing
	Bidirectional Reflectance Distribution Models

	Related Work
	HELIOS++
	A GPU-accelerated framework for simulating LiDAR scanning
	BlenSor: Blender Sensor Simulation Toolbox and BlAInder Range Scanner
	Lidar Simulation for Robotic Application Development
	LiDARsim: Realistic LiDAR Simulation by Leveraging the Real World
	Learning to Simulate Realistic LiDARs

	Implementation
	Simulator Overview
	Simulator Pipeline
	Technology Stack

	Sensor Calibration
	Sensor Calibration Overview
	Interfacing with the Lidar
	Sensor Calibration Implementation

	Graphics Engine
	Graphics Engine Overview
	Beam Rendering
	Calibration Data Rendering

	Simulation Engine
	Simulation Engine Overview
	Simulation Engine Inputs
	Lidar Beam Calculation
	Synthetic Noise Calculation
	BRDFs for Addressing Data Gaps

	Application Walk-Through
	Calibrating the Simulation
	Configuring the Simulation
	Running the Simulation

	Results and Evaluation
	Evaluation Overview
	Validating Key Characteristics
	Improved Accuracy of ApolloSim Over Parametric Models
	Efficacy of BRDFs in Addressing Data Gaps
	Qualitative Analysis of ApolloSim

	Conclusions and Future Work
	Conclusions
	Future Work
	Improving the Current Features of ApolloSim
	Additional Features for ApolloSim

	Additional Information
	Why ``ApolloSim"?
	ROS 2 Node for Collecting Lidar Data
	Propagation of Data from Calibration to Simulation
	Compute Shader Pseudocode
	The Cook-Torrance Model
	The Fresnel Effect

	Bibliography

